منابع مشابه
Building Blocks of Upward Planar Digraphs
The upward planarity testing problem consists of testing if a digraph admits a drawing Γ such that all edges in Γ are monotonically increasing in the vertical direction and no edges in Γ cross. In this paper we reduce the problem of testing a digraph for upward planarity to the problem of testing if its blocks admit upward planar drawings with certain properties. We also show how to test if a b...
متن کاملComputing Upward Topological Book Embeddings of Upward Planar Digraphs
This paper studies the problem of computing an upward topological book embedding of an upward planar digraph G, i.e. a topological book embedding of G where all edges are monotonically increasing in the upward direction. Besides having its own inherent interest in the theory of upward book embeddability, the question has applications to well studied research topics of computational geometry and...
متن کاملMonotone Simultaneous Embeddings of Upward Planar Digraphs
We study monotone simultaneous embeddings of upward planar digraphs, which are simultaneous embeddings where the drawing of each digraph is upward planar, and the directions of the upwardness of different graphs can differ. We first consider the special case where each digraph is a directed path. In contrast to the known result that any two directed paths admit a monotone simultaneous embedding...
متن کاملMaximum Upward Planar Subgraphs of Embedded Planar Digraphs
Let G be an embedded planar digraph. A maximum upward planar subgraph of G is an embedding preserving subgraph that is upward planar and, among those, has the maximum number of edges. This paper presents an extensive study on the problem of computing maximum upward planar subgraphs of embedded planar digraphs: Complexity results, algorithms, and experiments are presented. Namely: (i) we prove t...
متن کامل1-Bend Upward Planar Drawings of SP-Digraphs
It is proved that every series-parallel digraph whose maximum vertex-degree is ∆ admits an upward planar drawing with at most one bend per edge such that each edge segment has one of ∆ distinct slopes. This is shown to be worst-case optimal in terms of the number of slopes. Furthermore, our construction gives rise to drawings with optimal angular resolution π ∆ . A variant of the proof techniqu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Graph Algorithms and Applications
سال: 2007
ISSN: 1526-1719
DOI: 10.7155/jgaa.00135